
An Automated Framework for Shortest Path
Computation

R.Kamatchi,
Research Scholar,

Mother Teresa Women's University,
 Kodaikanal, India

Dr.S.Lakshmi,
Associate Professor,

 Department of Computer Science and Engineering,
Jeppiaar Engineering College, Chennai India

Abstract:Shortest path computation is one of the most
common queries in location-based services that involve
transportation networks. Motivated by scalability challenges
faced in the mobile network industry, we propose adopting the
wireless broadcast model for such location-dependent
applications. Existing work develop a framework called live
traffic index (LTI) which enables drivers to quickly and
effectively collect the live traffic information on the
broadcasting channel. An impressive result is that the driver
can compute/update their shortest path result by receiving
only a small fraction of the index. As such, huge
communication cost will be spent on sending result paths on
this model. We will extend our solution on time dependent
networks. This is a very interesting topic since the decision of
a shortest path depends not only on current traffic data but
also based on the predicted traffic circumstances.

I.INTRODUCTION:
Computing fastest routes in road networks is one of the
showpieces of real-world applications of algorithmic. In
principle we could use Dijkstra’s algorithm. But for large
road networks this would be far too slow. Therefore, in
recent years, there has been considerable interest in speed-
up techniques for route planning. This makes it possible to
preprocess some information once and for all that can be
used to accelerate all subsequent point-to-point queries.
Today, the shortest path computation problem in road
networks can be regarded as largely solved. However, real
road networks change all the time. In this paper, we address
two such dynamic scenarios: We present two novel
methods, namely Elliptic Boundary (EB) and Next Region
(NR)e.g., due to traffic jams, and switching between
different cost functions that take vehicle type, road
restrictions, or driver preferences into account.
For example, in Google Maps, once a shortest path from A
to B has been obtained which passes through C, users can
simply change the query to find the shortest path from A to
B which is constrained to pass through D instead of C and
the new shortest path is presented to the user instantly.
Requiring that the result be obtained in real time (or almost
real time) precludes the use of conventional algorithms that
are graph-based (e.g., the INE and IER methods and
improvements) which usually incorporate Dijkstra’s
algorithm in at least some parts of the solution

LITERATURE SURVEY:
IN TRANSIT TO CONSTANT TIME SHORTEST-PATH
QUERIES IN ROAD NETWORKS
When you drive to somewhere ‘far away’, you will leave
your current location via one of only a few ‘important’

traffic junctions. Starting from this informal observation,
we develop an algorithmic approach transit node routing
that allows us to reduce quickest-path queries in road
networks to a small number of table lookups. We present
two implementations of this idea, one based on a simple
grid data structure and one based on highway hierarchies.
For the road map of the United States, our best query times
improve over the best previously published figures by two
orders of magnitude. Our results exhibit various trade-offs
between average query time (5 µs to 63 µs), preprocessing
time (59 min to 1200 min), and storage overhead (21
bytes/node to 244 bytes/node).

ENGINEERING HIGHWAY HIERARCHIES
We presented a shortest path algorithm that allows fast
point-to-point queries in graphs using preprocessed data.
Here, we give an extensive revision of our method. It
allows faster query and preprocessing times, it reduces the
size of the data obtained during the preprocessing and it
deals with directed graphs. Some important concepts like
the neighbourhood radii and the contraction of a network
have been generalized and are now more flexible. The
query algorithm has been simplified: it differs only by a
few lines from the bidirectional version of DIJKSTRA'S
algorithm. We can prove that our algorithm is correct even
if the graph contains several paths of the same length.
Experiments with real-world road networks confirm the
effectiveness of our approach. Preprocessing the network of
Western Europe, which consists of about 18 million nodes,
takes 15 minutes and yields 68 bytes of additional data per
node. Then, random queries take 0.76 ms on average. If we
are willing to accept slower query times (1.38 ms), the
memory usage can be decreased to 17 bytes per node. For
the European and the US road networks, we can guarantee
that at most 0.05% of all nodes are visited during any
query.

REACH-BASED ROUTING: A NEW APPROACH TO
SHORTEST PATH ALGORITHMS OPTIMIZED FOR

ROAD NETWORKS
We study the point-to-point shortest path problem in a
setting where preprocessing is allowed. We improve the
reach-based approach of Gutman in several ways. In
particular, we introduce a bidirectional version of the
algorithm that uses implicit lower bounds and we add
shortcut arcs which reduce vertex reaches. Our
modifications greatly reduce both preprocessing and query
times. The resulting algorithm is as fast as the best previous
method, due to Sanders and Schultes. However, our

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1526

algorithm is simpler and combines in a natural way with
A∗ search, which yields significantly better query times.

I/O-EFFICIENCY OF SHORTEST PATH ALGORITHMS: AN

ANALYSIS
To establish the behavior of algorithms in a paging
environment, the author analyzes the input/output (I/O)
efficiency of several representative shortest path
algorithms. These algorithms include single-course,
multisource, and all pairs ones. The results are also
applicable for other path problems such as longest paths,
most reliable paths, and bill of materials. The author
introduces the notation and a model of a paging
environment. The I/O efficiencies of the selected single-
source, all pairs, and multisource algorithms are analyzed
and discussed.

HIGHWAY HIERARCHIES HASTEN EXACT SHORTEST PATH

QUERIES
We present a new speedup technique for route planning
that exploits the hierarchy inherent in real world road
networks. Our algorithm preprocesses the eight digit
number of nodes needed for maps of the USA or Western
Europe in a few hours using linear space. Shortest (i.e.
fastest) path queries then take around eight milliseconds to
produce exact shortest paths. This is about 2 000 times
faster than using Dijkstra’s algorithm.

DYNAMIC HIGHWAY-NODE ROUTING
We introduce a dynamic technique for fast route planning
in large road networks. For the first time, it is possible to
handle the practically relevant scenarios that arise in
present-day navigation systems: When an edge weight
changes (e.g., due to a traffic jam), we can update the
preprocessed information in 2-40ms allowing subsequent
fast queries in about one millisecond on average. When we
want to perform only a single query, we can skip the
comparatively expensive update step and directly perform a
prudent query that automatically takes the changed
situation into account. If the overall cost function changes
(e.g., due to a different vehicle type), re computing the
preprocessed information takes typically less than two
minutes.
The foundation of our dynamic method is a new static
approach that generalises and combines several previous
speedup techniques. It has outstandingly low memory
requirements of only a few bytes per node.

SHORTEST PATH ALGORITHMS: AN EVALUATION USING REAL

ROAD NETWORKS
The classic problem of finding the shortest path over a
network has been the target of many research efforts over
the years. These research efforts have resulted in a number
of different algorithms and a considerable amount of
empirical findings with respect to performance.
Unfortunately, prior research does not provide a clear
direction for choosing an algorithm when one faces the
problem of computing shortest paths on real road networks.
Most of the computational testing on shortest path
algorithms has been based on randomly generated

networks, which may not have the characteristics of real
road networks. In this paper, we provide an objective
evaluation of 15 shortest path algorithms using a variety of
real road networks. Based on the evaluation, a set of
recommended algorithms for computing shortest paths on
real road networks is identified. This evaluation should be
particularly useful to researchers and practitioners in
operations research, management science, transportation,
and Geographic Information Systems. The computation of
shortest paths is an important task in many network and
transportation related analyses. The development,
computational testing, and efficient implementation of
shortest path algorithms have remained important research
topics within related disciplines such as operations.

LOCATION-BASED SPATIAL QUERY PROCESSING IN WIRELESS

BROADCAST ENVIRONMENTS
 Location-based spatial queries (LBSQs) refer to spatial
queries whose answers rely on the location of the inquirer.
Efficient processing of LBSQs is of critical importance
with the ever-increasing deployment and use of mobile
technologies. We show that LBSQs have certain unique
characteristics that traditional spatial query processing in
centralized databases does not address. For example, a
significant challenge is presented by wireless broadcasting
environments, which have excellent scalability but often
exhibit high-latency database access. In this paper, we
present a novel query processing technique that, while
maintaining high scalability and accuracy, manages to
reduce the latency considerably in answering location-
based spatial queries. Our approach is based on peer-to-
peer sharing, which enables us to process queries without
delay at a mobile host by using query results cached in its
neighboring mobile peers. We demonstrate the feasibility
of our approach through a probabilistic analysis, and we
illustrate the appeal of our technique through extensive
simulation results.

SHORTEST PATH COMPUTATION ON AIR INDEXES
Shortest path computation is one of the most common
queries in location-based services that involve
transportation networks. Motivated by scalability
challenges faced in the mobile network industry, we
propose adopting the wireless broadcast model for such
location-dependent applications. In this model the data are
continuously transmitted on the air, while clients listen to
the broadcast and process their queries locally. Although
spatial problems have been considered in this environment,
there exists no study on shortest path queries in road
networks. We develop the first framework to compute
shortest paths on the air, and demonstrate the practicality
and efficiency of our techniques through experiments with
real road networks and actual device specifications.

ENERGY- EFFICIENT SHORTEST PATH QUERY

PROCESSING ON AIR
Wireless broadcast provides a scalable and secure spatial
data dissemination approach for geographical applications
in wireless mobile environments. Among various location-
based services, the shortest path query on road networks is

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1527

one of the most popular and essential services in our daily
life. In this paper, we propose an energy-efficient scheme
for on air shortest path query processing on road networks,
which leverages an elaborate air index called Bag Index
based upon the novel Hilbert-based heuristic tree
decomposition for the road networks. Experimental results
show that the proposed approach incurs less energy
consumption on both communication and computation than
the previous schemes.

PROXIMITY SEARCH IN DATABASES
An information retrieval (IR) engine can rank documents
based on textual proximity of keywords within each
document. In this paper we apply this notion to search
across an entire database for objects that are \near "
other relevant objects. Proximity search enables simple
\focusing " queries based on general relationships
among objects, helpful for interactive query sessions. We
view the database as a graph, with data in vertices (objects)
and relationships indicated by edges. Proximity is dened
based on shortest paths between objects. We have
implemented a prototype search engine that uses this model
to enable keyword searches over databases, and we have
found it very e active for quickly ending relevant
information. Computing the distance between objects in a
graph stored on disk can be very expensive. Hence, we
show how to build compact indexes that allow us to quickly
nd the distance between objects at search time.
Experiments show that our algorithms are e-cient and scale
well.

HIERARCHICAL ENCODED PATH VIEWS FOR PATH QUERY

PROCESSING
Efficient path computation is essential for applications such
as intelligent transportation systems (ITS) and network
routing. In ITS navigation systems, many path requests can
be submitted over the same, typically huge, transportation
network within a small time window. While path pre
computation (path view) would provide an efficient path
query response, it raises three problems which must be
addressed: 1) pre computed paths exceed the current
computer main memory capacity for large networks; 2)
disk-based solutions are too inefficient to meet the stringent
requirements of these target applications; and 3) path views
become too costly to update for large graphs (resulting in
out-of-date query results). We propose a hierarchical
encoded path view (HEPV) model that addresses all three
problems. By hierarchically encoding partial paths, HEPV
reduces the view encoding time, updating time and storage
requirements beyond previously known path pre
computation techniques, while significantly minimizing
path retrieval time. We prove that paths retrieved over
HEPV are optimal. We present complete solutions for all
phases of the HEPV approach, including graph partitioning,
hierarchy generation, path view encoding and updating, and
path retrieval. In this paper, we also present an in-depth
experimental evaluation of HEPV based on both synthetic
and real GIS networks. Our results confirm that HEPV
offers advantages over alternative path finding approaches
in terms of performance and space efficiency

AN EFFICIENT PATH COMPUTATION MODEL FOR

HIERARCHICALLY STRUCTURED TOPOGRAPHICAL ROAD MAPS
In this paper, we have developed a HiTi (Hierarchical
MulTi) graph model for structuring large topographical
road maps to speed up the minimum cost route
computation. The HiTi graph model provides a novel
approach to abstracting and structuring a topographical
road map in a hierarchical fashion. We propose a new
shortest path algorithm named SPAH, which utilizes HiTi
graph model of a topographical road map for its
computation. We give the proof for the optimality of
SPAH. Our performance analysis of SPAH on grid graphs
showed that it significantly reduces the search space over
existing methods. We also present an in-depth experimental
analysis of HiTi graph method by comparing it with other
similar works on grid graphs. Within the HiTi graph
framework, we also propose a parallel shortest path
algorithm named ISPAH. Experimental results show that
inter query shortest path problem provides more
opportunity for scalable parallelism than the intra query
shortest path problem.

II.RELATED WORK:
A) ROAD NETWORKS AND SHORTEST PATH QUERY
Algorithms for shortest path queries are categorized as
follows: (a) those with no pre-computation, where only the
road network information is available, and (b) those with
pre-computation, where shortest paths between some or all
node pairs are pre-calculated and appropriate information is
materialized in order to speed up the search.
 1) WITHOUT PRE-COMPUTATION:
 A common algorithm is Dijkstra’s [13]. Initially, nodes
adjacent to vs are pushed into a min-heap with their graph
weights from vs as sorting keys. The top node v in the heap
is popped in every iteration and expanded, i.e., its adjacent
nodes v 0 are en-heaped with key equal to that of v plus the
weight of edge (v, v 0). The process stops when vt is
popped. The shortest path is returned by tracing backwards
the expansions that lead to vt. A* search [14] improves on
Dijkstra’s algorithm but requires a lower bound LB(v, vt)
to be known for the graph distance between an encountered
node v and the target node vt. The difference from Dijkstra
is that the key of each en heaped node v is increased by
LB(v, vt). We ignore A* in the following since we assume
general road networks (where no a priori lower bounds
exist).

 2) WITH PRE-COMPUTATION:
 First partitions the network nodes. A bit vector (flag)[15]
is assigned to every edge, where each bit corresponds to a
partition; in the flag of edge (vi, vj) the bit for a partition is
1 if there is at least one node v in the partition where the
shortest path from vi to v traverses (vi, vj). Search (e.g.,
Dijkstra) only considers edges whose bit for vt’s partition is
1. Landmark chooses some anchor nodes (called
landmarks) and pre-computes for each node v its graph
distances to all anchor nodes. A distance vector is then
created from the distances to the anchor nodes. From the
distance vectors of two nodes, a lower bound can be
derived for their graph distance.

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1528

3) WIRELESS BROADCASTING AND AIR INDEXES
In this model the server repeatedly transmits identical
broadcast cycles, each containing the entire database and
potentially some indexing information (called air index).
The broadcast cycle consists of fixed-size packets, defining
the smallest information unit transmitted. The most
common organization of the broadcast cycle is the (1,m)
interleaving scheme

exemplified in Figure 1; the data tuples are placed into m
equi-sized data segments interleaved by m copies of the
index (e.g., a B-tree). To process a query, the client tunes in
the broadcast channel and waits until the next index is
broadcast; the larger m is, the shorter the wait for the index.
The client receives the index, performs its point/range
selection, and then waits until the data segments that
contain the result tuples are broadcast; the larger m is, the
longer the wait for the data.

III. PROBLEM STATEMENT
The shortest path computation is mainly used in the road
network. The very first solution of the optimal route query
is based on the pre-stored weights. The first approaches
considered only the end points. Most of the techniques have
limitations in some particular area. The main problems are
to find shortest path during road traffic networks. Among
this some may consider constraints and others without
consider the constraints and these are the main problems to
consider.

IV. MOTIVATION:

 We are planning a weekend trip around the town as
follows: first we intend to visit a shopping center in the
afternoon to check the season’s new arrivals, then we plan
to take lunch in an Indian restaurant, and finally, we
would like to watch a specific movie at late night.
Naturally, we intend to drive the minimum overall distance
to these destinations. That is, we need to find the locations
of the shopping center si, the Indian restaurant rj, and the
theater tk that shows our movie, where traveling between
these locations in the given order would result in the
shortest travel distance (or time).
We call this type of queries where the order of points to be
visited is given and fixed, the optimal sequenced route
queries or OSR for short. Using Fig. 2, we show that the
OSR query cannot be optimally answered by simply
performing a series of independent nearest neighbor
searches from different locations. We use the first example
described above as our running example throughout the

paper. The figure shows a network of equally sized
connected square cells, three different types of point sets
shown by white, black and gray circles representing
shopping centers, Indian restaurants, and theaters,
respectively, and a starting point p (shown by fig1).

FIGURE 2

V. PRELIMINARY

PERFORMANCE FACTORS
The main performance factors involved in OSP are: (i) tune
in cost (at client side), (ii) broadcast size (at server side),
and (iii) maintenance time (at server side), and (iv) query
response time (at client side).
In this work, we prioritize the tune-in cost as the main
optimized factor since it affects the duration of client
receivers into active mode and power consumption is
essentially determined by the tuning cost (i.e., number of
packets received) . In addition, shortening the duration of
active mode enables the clients to receive more services
simultaneously by selective tuning . These services may
include providing live weather information, delivering
latest promotions in surrounding area, and monitoring
availability of parking slots at destination. If we minimize
the tune-in cost of one service, then we reserve more
resources for other services.
The index maintenance time and broadcast size relate to the
freshness of the live traffic information. The maintenance
time is the time required to update the index according to
live traffic information. The broadcast size is relevant to the
latency of receiving the latest index information. As the
freshness is one of our main design criteria, we must
provide reasonable costs for these two factors.
The last factor is the response time at client side. Given a
proper index structure, the response time of shortest path
computation can be very fast (i.e., few milliseconds on
large road maps) which is negligible compared to access
latency for current wireless network speed. The
computation also consumes power but their effect is
outweighed by communication. It remains, however, an
evaluated factor for OSP.
Bidirectional Search executes Dijkstra’s algorithm
simultaneously forwards from the source s and backwards
from the target t. Once some node has been visited from
both directions, the shortest path can be derived from the
information already gathered [4]. Many more advanced
speed-up techniques use bidirectional search as an optional
or sometimes even mandatory ingredient.

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1529

Hierarchical Approaches try to exploit the hierarchical
structure of the given network. In a preprocessing step, a
hierarchy is extracted, which can be used to accelerate all
subsequent queries.
Many speed-up techniques can be combined. In [17], a
combination of a special kind of geometric container [18],
the separator-based multi-level method [19], and A∗ search
yields a speed-up of 62 for a railway transportation
problem. In [20], combinations of A∗ search, bidirectional
search, the separator-based multi-level method, and
geometric containers are studied: Depending on the graph
type, different combinations turn out to be best
B)ADAPTATION OF EXISTING APPROACHES
In this section, we briefly discuss the applicability of the
state-of-the-art shortest path solutions on different
transmission models. As discussed in the introduction, the
result transmission model scales poorly with respect to the
number of clients. The communication cost is proportional
to the number of clients (regardless of whether the server
transmits live traffic or result paths to the clients). Thus, we
omit this model from the remaining discussion.
1. RAW TRANSMISSION MODEL
Under the raw transmission model, the traffic data (i.e.,
edge weights) are broadcasted by a set of packets for each
broadcast cycle. Each header stores the latest time stamp of
the packets, so that clients can decide which packets have
been updated, and only fetch those updated packets in the
current broadcast cycle. Having downloaded the raw traffic
data from the broadcast channel, the following methods
either directly calculate the shortest path or efficiently
maintain certain data structure for the shortest path
computation.
Uninformed search (e.g., Dijkstra’s algorithm) traverses
graph nodes in ascending order of their distances from the
source s, and eventually discovers the shortest path to the
destination t. Bi-directional search (BD) reduces the search
space by executing Dijkstra’s algorithm simultaneously
forwards from s and backwards from t. As to be discussed
shortly, bi-directional search can also be applied on some
advanced index structures. However, the response time is
relatively high and the clients may receive large amount of
irrelevant updates due to the transmission model.
Goal directed approaches search towards the target by
filtering out the edges that cannot possibly belong to the
shortest path. The filtering procedure requires some pre-
computed information. ALT and arc flags (AF) are two
representative algorithms in this category.
ALT makes use of A search, landmarks, and triangle
inequality. A few landmark nodes are selected and the
distances between each landmark and every node are pre-
computed. These pre-computed distances can be exploited
to derive distance bounds search on the graph. Delling and
Wagner propose a lazy update paradigm for ALT (DALT)
so that it can tolerate certain extents of edge weights
changes on a dynamic graph. The distance bounds derived
from the pre-computed information remain correct if no
edge weight becomes lower than the initial weight used at
the ALT construction. This lazy update paradigm
significantly reduces the index maintenance cost.

Another well known goal directed approach is arc flags that
partitions the graph into m sub-graphs. For each edge e, it
stores a bitmap B if and only if a shortest path to a node in
the sub-graph i starts with e. During the Dijkstra execution,
it only relaxes those edges for which the bitmap flag of the
target node’s subgraph is true. AF provides reasonable
speed-ups, but consumes too much space for large road
networks. The dynamic updates of AF (DAF) have been
recently studied in. However, the solution is not practical
since the cost of updating the bitmap flags is exponential to
the number of edge updates.
Dynamic shortest path tree (DSPT) maintains a tree
structure locally for efficient shortest path retrieval. how to
maintain a correct shortest path tree rooted at s after receive
a set of edge weight updates to the graph . Finding a
shortest path from s to any node is computed time on the
shortest path tree. In their work, a simple dynamic version
of Dijkstra is proposed which can outperform all
competitors.
2. Index Transmission Model
The index transmission model enables servers to broadcast
an index instead of raw traffic data. We review the state-of
the- art indices for shortest path computation and discuss
their applicability on the index transmission model.
 Road map hierarchical approaches try to exploit the
hierarchical structure to the road map network in a pre-
processing step, which can be used to accelerate all
subsequent queries. These speed-up approaches include
reach, highway hierarchies (HH) , contraction hierarchies
(CH) , and transit node routing (TNR).
Reach, HH, and CH are based on shortcut techniques, i.e.,
some paths in the original graph are represented by some
shortcut edges. The shortcuts are identified out by
exploiting the hierarchical structure (e.g., node ordering) on
the road map network. To answer a query, a bi-directional
search is executed on the overlay graph that constitutes of
the shortcuts and some edges in the original graph. As the
shortcuts are the only extra structure stored in the index, the
construction is relatively fast as compared to other index
approaches.
The hierarchical approaches can provide very fast query
time as reported in. However, the maintenance time could
be high as most of them have no efficient approach to
update the pre-computed data structure. HH and CH can
support dynamic weight updates but the solution is limited
to weight increasing cases. In, a theoretical approach has
been proposed to update the overlay graphs, but the
proposed algorithms have not been shown to have good
practical performances in real-world networks. Again, none
of these approaches supports index transmission model
well since the shortest path can only be computed on a
complete index.
Hierarchical index structures provide another way to
abstracting and structuring a topographical index in a
hierarchical fashion. Hierarchical MulTi-graph model
(HiTi) is a representative approach in this category. The
meaning of hierarchy in HiTi is the hierarchy of the index
(i.e., tree structure) instead of the hierarchy of the road map
(i.e., level of roads). By exploiting the hierarchical index
structure, HiTi can support fast shortest path computation

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1530

on a portion of entire index which can significantly reduce
the tune-in cost on the index transmission model. However,
prohibitive maintenance time and large broadcast size make
it inapplicable to OSP on any transmission model.
Hierarchical encoded path view (HEPV) and Hub indexing
share the same intuition of HiTi which divides large graph
into smaller sub graphs and organize them in a hierarchical
fashion by pushing up border nodes. However, both are
infeasible for OSP since these approaches suffer from the
excessive storage overhead for a large amount of pre-
computed path information.
Full pre-computation
Pre-computes the shortest paths between any two nodes in
the road network, such as SILC and distance index. Even
though these approaches offer fast query response time, the
maintenance cost and size overhead become prohibitive on
large road networks. Besides, as reported by, the
performance of the full pre-computation approaches (i.e.,
SILC is not much superior to those road map hierarchical
approaches (i.e., CH.)
Combination approaches integrate promising features from
different index structure to support efficient shortest path

computation. SHARC and CALT] are two well studied
combination approaches which integrate road map
hierarchical approaches with AF and ALT, respectively.
However, these complex index structures are either lack of
efficient maintenance strategies or have huge size overhead
which makes them inapplicable to OSP on any transmission
model.
DISCUSSION
Except for hierarchical index structures, all methods on
either raw or index transmission models suffer from a
drawback that a few updates could affect a large portion of
packets. We demonstrate this by a simple probabilistic
analysis.
OUR CONTRIBUTIONS
An impressive result is that the driver can compute/update
their shortest path result by receiving only a small fraction
of the index. As such, huge communication cost will be
spent on sending result paths on this model. We will extend
our solution on time dependent networks. This is a very
interesting topic since the decision of a shortest path
depends not only on current traffic data but also based on
the predicted traffic circumstances.

SYSTEM ARCHITECTURE:

FIGURE 3

USER GIVEN QUERY QUERIES WITH INFORMATION

Store query with result

SEARCHING ROUTE QUERIES WITH POINT

FORWARD
SEARCH

BACKWARD
SEARCH

BATCH BASED
SEARCHING

FIND THE RESULT WITH BEST
CANDIDATE SET IN LENGTH BACKWARD SEARCH FORWARD SEARCH

FIND THE RESULT WITH BEST
CANDIDATE SET IN LENGTH

OPTIMAL ROUTE QUERIES

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1531

SENSOR NODE
The Sensor Node is used to sense all the nodes and the
process in the network. Each and every node will be
created via sensor. Sensor can also able to forward and
receive the files and can also synchronize it successfully.
SEARCH ENGINE SERVER CONSTRUCTION
This module is an important module of our system. This
module provides the ways to construct database of location
information and other related information of that location
ROUTE QUERY CONSTRUCTION
This module facilitates our system to construct the user’s
query. This query construction is done for making efficient
way for processing the query to give optimal result for the
users.

VI ELLIPTIC BOUNDARY (EB) METHOD

 Intuitively, in order to efficiently process shortest path
queries we have to partition the road network into regions
and use an index structure to guide the search through
them. To satisfy the requirements, the index should be
particularly concise, much more so than existing indexes
designed for disk-resident networks. The Elliptic Boundary
method (EB) follows this approach. Its crux is to first
provide the client with an upper bound of the shortest path
distance between vs and vt. This bound is used to prune
(i.e., to avoid listening to) network information about nodes
that lie too far away from vs and vt to affect the shortest
path search. This is achieved by partitioning the network
into regions, and placing in the index of EB information
about the minimum and maximum possible distance from
any partition to any other. EB owes its name to the fact that
the search area is reminiscent of a network-based ellipse
with foci the regions.

C) INDEX OF EB
The index of EB includes two components. The first de-
fines partitions and provides a mapping of nodes into
regions; the second specifies minimum/maximum distances
between regions. To commence query processing, the client
must first identify the regions Rs and Rt of the source vs
and destination vt, respectively. This process is bound to
the partitioning method used. A straightforward approach is
to superimpose a Euclidean regular grid (of equi-sized
rectangular cells) over the network, and consider the part of
the network inside each cell as a region. In this approach
the client could trivially map the Euclidean coordinates of
vs and vt to regions Rs and Rt, requiring only knowledge of
the grid granularity (e.g., k×m cell partitioning), and of the
total spatial extent of the grid. The drawback of this
approach is that some regions would contain too few nodes
(or be empty), while others would be too full. This would
reduce the benefits of partitioning and impede the search.
D) CLIENT-SIDE PROCESSING IN EB
Posed a query, the client tunes in the broadcast channel,
and listens to the current packet. It retrieves the pointer to
the next index and sleeps; it wakes up when the index starts
being broadcast, and receives it in its entirety. Regions Rs
and Rt are determined. The second component of the index
(array A) is then used to derive an upper bound UB for the

shortest path distance from vs to vt; the maximum value
stored in ARi,Rj serves as UB. The correctness of this
upper bound can be easily seen, since any path from source
to destination has to pass through at least one border node
of each Rs and Rt. The next step is to determine which
regions must be received. Based again on A, the client
needs to listen to only those regions R for which
mindist(Rs, R)+mindist(R, Rt) ≤ UB, i.e., the sum of
minimum distance from Rs to R plus the minimum distance
from R to Rt is no larger than UB. Upon deciding which
regions are necessary, it sleeps and wakes up when their
data (contained nodes and adjacency lists thereof) are
broadcast. When all necessary regions are broadcast and
received, the client performs a Dijkstra search in their
union (a sub-graph of the network) and reports the
computed shortest path; this is guaranteed to be the correct
answer in the entire network. Observe that access latency
does not exceed one broadcast cycle.

VII NEXT REGION (NR) METHOD
While EB allows for selective tuning, its search space (i.e.,
the set of regions received by the client) may still be large.
The problem is exacerbated when the source and
destination are far away, as EB’s network-based ellipse
includes an increasing number of regions. In the extreme
case where vs and vt are located in the furthest regions, it is
possible that EB needs to receive all regions. Note that in
this degenerate case, performance may actually be worse
than Dijkstra’s algorithm, since the broadcast cycle of EB
is longer. In this section we present the Next Region
method (NR), which avoids the above problem. The server
again pre-computes the shortest paths between all border
nodes of different regions, but now the index keeps for
each pair of Ri, Rj the identifiers of intermediate regions
appearing in any shortest path between any of their border
nodes. These regions are guaranteed to contain the shortest
path from any node in Ri to any node in Rj . To exemplify,
consider that the index includes an n × n × n array A of
boolean values, where n is the number of network regions.
The bit in cell ARi,Rj ,Rk is 1 if and only if there exists a
shortest path from Ri to Rj that traverses Rk. Given array
A, the client knows in advance which regions are necessary
for query processing. Consider the example in Figure 4.
The source is in region R1, which has two border nodes;
the destination is in R16, which has a single border node.
There are two shortest paths between the border nodes of
R1 and R16. One of them traverses regions R2, R6, R7,
R11 and R12, and the other regions R5, R6, R7, R11 and
R12. The NR index records that any shortest path from R1
to R16 may only pass through the union of the above
region sets (shown gray in the figure), and the
corresponding bits in A are set to 1. Array A as described
above has n 3 size, and would lead to a large index. This, in
turn, implies a long broadcast cycle, especially if the (1,m)
scheme is applied. In Section 5.1 we show how we can
retain the pruning effectiveness of NR while both (i)
keeping the broadcast cycle short and (ii) achieving low
access latency. We stress that the reduced access latency is
provided by local, region-specific indexes, broadcast

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1532

immediately before the corresponding regions. This
eliminates the need for (1,m) interleaving, and is
fundamentally different from the common practice in the
literature of having a global index, and replicating identical
copies of it in the broadcast cycle.

Which has a single border node? There are two shortest
paths between the border nodes of R1 and R16. One of
them traverses regions R2, R6, R7, R11 and R12, and the
other regions R5, R6, R7, R11 and R12. The NR index
records that any shortest path from R1 to R16 may only
pass through the union of the above region sets (shown
gray in the figure), and the corresponding bits in A are set
to 1. Array A as described above has n 3 size, and would
lead to a large index. This, in turn, implies a long broadcast
cycle, especially if the (1,m) scheme is applied. In Section
B we show how we can retain the pruning effectiveness of
NR while both (i) keeping the broadcast cycle short and (ii)
achieving low access latency. We stress that the reduced
access latency is provided by local, region-specific indexes,
broadcast immediately before the corresponding regions.
This eliminates the need for (1,m) interleaving, and is
fundamentally different from the common practice in the
literature of having a global index, and replicating identical
copies of it in the broadcast cycle.
E)INDEX OF NR
The first component of the index in NR is the same as EB,
and is used to identify the source and destination regions Rs
and Rt. Regarding the second component, the main idea is
that, since the device will have to wake up every time a
needed region is broadcast, it does not need to know all the
required regions in advance. It suffices, instead, to only
know when the next required region will be broadcast.
When the client receives that region, it also listens to the
adjacent local index in order to determine the next required
region, and so on. This way, we keep the broadcast cycle
small, we enable the client to receive only the relevant parts
of (instead of the entire) indexing information, and allow
the device to commence query processing shortly after
tuning in for the first time, without employing the (1,m)
scheme. Specifically, the index A m of region Rm is an
array with n rows and n columns. A m is placed in the
broadcast cycle immediately before Rm’s data. Every cell

A m Ri,Rj indicates the next region Rnxt in the broadcast
cycle that is needed for a shortest path from Ri to Rj . Note
that Rnxt could be Rm itself. Figure 5 shows the structure
of the cycle, where the unlabeled slot before each region
corresponds to its index.
F)CLIENT-SIDE PROCESSING IN NR
Posed a query, the device tunes in the channel, receives the
current packet, and waits until the subsequent index is
broadcast (for this to be possible, every packet in the cycle
includes a pointer (offset) to the subsequent index). The
client receives this index, and finds out what the next
required region Rnxt is. It wakes up when Rnxt is broadcast
and keeps listening until A nxt+1 is also received. From A
nxt+1, it determines the next needed region, and so on.
Note that if the end of the current broadcast cycle is
reached, another starts, and processing continues as if it
was the same cycle. When the latest index received
indicates that Rnxt is a region that the client already
possesses, listening stops and a Dijkstra search computes
the shortest path over all collected regions. Similarly to EB,
the access latency in NR does not exceed one broadcast
cycle. Regarding tuning time and memory requirements,
we expect NR to be superior to EB, as the client listens
only to a subset of the regions necessary in EB. The same
holds for CPU time at the client. Pre-computation cost is
identical to EB (assuming the same partitioning), as the
same shortest paths among border nodes are computed. To
illustrate, consider the broadcast cycle in Figure 5. The user
wants to find the shortest path from a source in R1 to a
destination in R25. The needed regions for this shortest
path computation are shown in gray color, but the client
does not know this in advance. Assume that the query is
posed while R11 data are broadcast, which points the client
to index A 12. Index A 12 (shown in Figure 6) indicates
that R13 is the next needed region, so the device sleeps and
wakes up to receive R13 and also the adjacent index A 14 .
A 14 indicates that R14 is also required, so the client
continues to receive data from the channel, until A 15
points to R19, as shown in Figure 6. The device sleeps until
R19 is broadcast, and so on. The process continues this way
until R8 is received and index A 9 points to the already
available R13; listening stops and the shortest path is
computed. Algorithm 2 in Appendix B formalizes this
process.
So far we have assumed that source and destination are
network nodes. In practice this may not always be the case,
i.e., the source/destination could be at arbitrary locations on
the network. EB and NR work as described, the difference
being that the border nodes of a region are now defined as
the intersections of its network edges (i.e., with the
boundary of the region).

VIII QUERY PROCESSING:
Distance signature is superior to the existing indexes in
terms of the diversity of the kinds of queries supported.
Since it indexes the underlying distances, rather than the
solution for a particular type of queries, it can be applied to
virtually any queries relating to distances. In this section,
we present the algorithms to process common spatial
queries based on the distance signatures. We discuss range

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1533

queries, and generalize the processing paradigm to other
query types such as aggregation queries and network joins.

FIGURE 6

G) DISTANCE SPECTRUM PARTITION:
A good partition of distance spectrum must consider the
following factors:

 DATASET DISTRIBUTION
 The distribution, especially the density of the dataset,
determines the object distribution in the distance spectrum.
Obviously, a dense dataset requires more categories than a
sparse dataset does.

 QUERY LOAD
 For example, the distance threshold ǫ of a range query,
query affect how precisely the distance spectrum should be
partitioned. In order to quantify the query load, we define
“spreading” (denoted by sp) as the distance threshold of
those objects that are interesting to the query. For range
queries, sp = ǫ, sp is the distance of the k+1th nearest
neighbor. Obviously, the distribution of sp should affect the
partition of distance spectrum so that the signatures can
achieve maximum performance.
STORAGE AVAILABILITY
Accurate partition requires more storage to encode the
categories than coarse partition. As such, the availability of
disk storage is also a concern.

IX CONCLUSIONS
We studied online shortest path computation; the shortest
path result is computed/updated based on the live traffic
circumstances. We carefully analyze the existing work and
discuss their inapplicability to the problem (due to their
prohibitive maintenance time and large transmission
overhead). To address the problem, an impressive result is

that the driver can compute/update their shortest path result
by receiving only a small fraction of the index. As such,
huge communication cost will be spent on sending result
paths on this model. We extended our solution on time
dependent networks. Since the decision of a shortest path
depends not only on current traffic data but also based on
the predicted traffic circumstances.

REFERENCES:
[1] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In

Transit to Constant Time Shortest-Path Queries in Road Networks,”
Proc. Workshop Algorithm Eng. and Experiments (ALENEX).

[2] P. Sanders and D. Schultes, “Engineering Highway Hierarchies,”
Proc. 14th Conf. Ann. European Symp. (ESA), pp. 804-816.

[3]. G. Dantzig, Linear Programming and Extensions, series Rand
Corporation Research Study Princeton Univ. Press,.

[4] . R.J. Gutman, “Reach-Based Routing: A New Approach to Shortest
Path Algorithms Optimized for Road Networks,” Proc. Sixth
Workshop Algorithm Eng. and Experiments and the First Workshop
Analytic Algorithmic and Combinatory (ALENEX/ANALC), pp.
100-111,

[5]. B. Jiang, “I/O-Efficiency of Shortest Path Algorithms: An Analysis,”
Proc. Eight Int’l Conf. Data Eng. (ICDE), pp.

[6]. P. Sanders and D. Schultes, “Highway Hierarchies Hasten Exact
Shortest Path Queries,” Proc. 13th Ann. European Conf. Algorithms
(ESA), pp. 568-579.

[7]. D. Schultes and P. Sanders, “Dynamic Highway-Node Routing,”
Proc. Sixth Int’l Conf. Experimental Algorithms (WEA), pp. 66-79.

[8]. F. Zhan and C. Noon, “Shortest Path Algorithms: An Evaluation
Using Real Road

[9]. D. Stewart, “Economics of Wireless Means Data Prices Bound to
Rise,” The Global and Mail,.

[10]. W.-S. Ku, R. Zimmermann, and H. Wang, “Location-Based Spatial
Query Processing in Wireless Broadcast Environments,” IEEE
Trans. Mobile Computing, vol. 7, no. 6, pp. 778-791,.

[11] . N. Malviya, S. Madden, and A. Bhattacharya, “A Continuous Query
System for Dynamic Route Planning,” Proc. IEEE 27th Int’l Conf
Data Eng. (ICDE), pp. 792-803.

[12]. G. Kellaris and K. Mouratidis, “Shortest Path Computation on Air
Indexes,” Proc. VLDB Endowment, vol. 3, no. 1, pp. 741-757.

[13]. E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271.

[14]. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE TSSC, 4(2):100–107.

[15] E. K¨ohler, R. H. M¨ohring, and H. Schilling. Fast point-to-point
shortest path computations with arc-flags. In 9th DIMACS
Implementation Challenge - Shortest Paths, 2007.

[16] G. Kellaris and K. Mouratidis, “Shortest Path
Computation on Air Indexes,” Proc. VLDB Endowment, vol. 3, no.
1, pp. 741-757.

[17]. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line:
An Empirical Case Study from Public Railroad Transport. ACM J.
of Exp. Algorithmics.

[18] . Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for
Efficient Shortest-Path Computation. ACM J. of Exp. Algorithmics.

[19]. Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level
Overlay Graphs for Shortest-Path Queries. In: Proceedings of the
8th Workshop on Algorithm Engineering and Experiments.

[20] Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining Speed-
up Techniques for Shortest-Path Computations. ACM J. of Exp.
Algorithmics.

R.Kamatchi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1526-1534

www.ijcsit.com 1534

