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Abstract:Shortest path computation is one of the most 
common queries in location-based services that involve 
transportation networks. Motivated by scalability challenges 
faced in the mobile network industry, we propose adopting the 
wireless broadcast model for such location-dependent 
applications. Existing work develop a framework called live 
traffic index (LTI) which enables drivers to quickly and 
effectively collect the live traffic information on the 
broadcasting channel. An impressive result is that the driver 
can compute/update their shortest path result by receiving 
only a small fraction of the index. As such, huge 
communication cost will be spent on sending result paths on 
this model. We will extend our solution on time dependent 
networks. This is a very interesting topic since the decision of 
a shortest path depends not only on current traffic data but 
also based on the predicted traffic circumstances. 

I.INTRODUCTION: 
Computing fastest routes in road networks is one of the 
showpieces of real-world applications of algorithmic. In 
principle we could use Dijkstra’s algorithm. But for large 
road networks this would be far too slow. Therefore, in 
recent years, there has been considerable interest in speed-
up techniques for route planning. This makes it possible to 
preprocess some information once and for all that can be 
used to accelerate all subsequent point-to-point queries. 
Today, the shortest path computation problem in road 
networks can be regarded as largely solved. However, real 
road networks change all the time. In this paper, we address 
two such dynamic scenarios:  We present two novel 
methods, namely Elliptic Boundary (EB) and Next Region 
(NR)e.g., due to traffic jams, and switching between 
different cost functions that take vehicle type, road 
restrictions, or driver preferences into account. 
For example, in Google Maps, once a shortest path from A 
to B has been obtained which passes through C, users can 
simply change the query to find the shortest path from A to 
B which is constrained to pass through D instead of C and 
the new shortest path is presented to the user instantly. 
Requiring that the result be obtained in real time (or almost 
real time) precludes the use of conventional algorithms that 
are graph-based (e.g., the INE and IER methods and 
improvements) which usually incorporate Dijkstra’s 
algorithm in at least some parts of the solution 

LITERATURE SURVEY: 
IN TRANSIT TO CONSTANT TIME SHORTEST-PATH
QUERIES IN ROAD NETWORKS 
When you drive to somewhere ‘far away’, you will leave 
your current location via one of only a few ‘important’ 

traffic junctions. Starting from this informal observation, 
we develop an algorithmic approach transit node routing 
that allows us to reduce quickest-path queries in road 
networks to a small number of table lookups. We present 
two implementations of this idea, one based on a simple 
grid data structure and one based on highway hierarchies. 
For the road map of the United States, our best query times 
improve over the best previously published figures by two 
orders of magnitude. Our results exhibit various trade-offs 
between average query time (5 µs to 63 µs), preprocessing 
time (59 min to 1200 min), and storage overhead (21 
bytes/node to 244 bytes/node). 

ENGINEERING HIGHWAY HIERARCHIES 
We presented a shortest path algorithm that allows fast 
point-to-point queries in graphs using preprocessed data. 
Here, we give an extensive revision of our method. It 
allows faster query and preprocessing times, it reduces the 
size of the data obtained during the preprocessing and it 
deals with directed graphs. Some important concepts like 
the neighbourhood radii and the contraction of a network 
have been generalized and are now more flexible. The 
query algorithm has been simplified: it differs only by a 
few lines from the bidirectional version of DIJKSTRA'S 
algorithm. We can prove that our algorithm is correct even 
if the graph contains several paths of the same length. 
Experiments with real-world road networks confirm the 
effectiveness of our approach. Preprocessing the network of 
Western Europe, which consists of about 18 million nodes, 
takes 15 minutes and yields 68 bytes of additional data per 
node. Then, random queries take 0.76 ms on average. If we 
are willing to accept slower query times (1.38 ms), the 
memory usage can be decreased to 17 bytes per node. For 
the European and the US road networks, we can guarantee 
that at most 0.05% of all nodes are visited during any 
query. 

REACH-BASED ROUTING: A NEW APPROACH TO
SHORTEST PATH ALGORITHMS OPTIMIZED FOR 

ROAD NETWORKS 
We study the point-to-point shortest path problem in a 
setting where preprocessing is allowed. We improve the 
reach-based approach of Gutman in several ways. In 
particular, we introduce a bidirectional version of the 
algorithm that uses implicit lower bounds and we add 
shortcut arcs which reduce vertex reaches. Our 
modifications greatly reduce both preprocessing and query 
times. The resulting algorithm is as fast as the best previous 
method, due to Sanders and Schultes. However, our 
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algorithm is simpler and combines in a natural way with 
A∗ search, which yields significantly better query times. 
 
I/O-EFFICIENCY OF SHORTEST PATH ALGORITHMS: AN 

ANALYSIS 
To establish the behavior of algorithms in a paging 
environment, the author analyzes the input/output (I/O) 
efficiency of several representative shortest path 
algorithms. These algorithms include single-course, 
multisource, and all pairs ones. The results are also 
applicable for other path problems such as longest paths, 
most reliable paths, and bill of materials. The author 
introduces the notation and a model of a paging 
environment. The I/O efficiencies of the selected single-
source, all pairs, and multisource algorithms are analyzed 
and discussed. 
 
HIGHWAY HIERARCHIES HASTEN EXACT SHORTEST PATH 

QUERIES 
We present a new speedup technique for route planning 
that exploits the hierarchy inherent in real world road 
networks. Our algorithm preprocesses the eight digit 
number of nodes needed for maps of the USA or Western 
Europe in a few hours using linear space. Shortest (i.e. 
fastest) path queries then take around eight milliseconds to 
produce exact shortest paths. This is about 2 000 times 
faster than using Dijkstra’s algorithm. 
 
DYNAMIC HIGHWAY-NODE ROUTING 
We introduce a dynamic technique for fast route planning 
in large road networks. For the first time, it is possible to 
handle the practically relevant scenarios that arise in 
present-day navigation systems: When an edge weight 
changes (e.g., due to a traffic jam), we can update the 
preprocessed information in 2-40ms allowing subsequent 
fast queries in about one millisecond on average. When we 
want to perform only a single query, we can skip the 
comparatively expensive update step and directly perform a 
prudent query that automatically takes the changed 
situation into account. If the overall cost function changes 
(e.g., due to a different vehicle type), re computing the 
preprocessed information takes typically less than two 
minutes. 
The foundation of our dynamic method is a new static 
approach that generalises and combines several previous 
speedup techniques. It has outstandingly low memory 
requirements of only a few bytes per node. 
 
SHORTEST PATH ALGORITHMS: AN EVALUATION USING REAL 

ROAD NETWORKS 
The classic problem of finding the shortest path over a 
network has been the target of many research efforts over 
the years. These research efforts have resulted in a number 
of different algorithms and a considerable amount of 
empirical findings with respect to performance. 
Unfortunately, prior research does not provide a clear 
direction for choosing an algorithm when one faces the 
problem of computing shortest paths on real road networks. 
Most of the computational testing on shortest path 
algorithms has been based on randomly generated 

networks, which may not have the characteristics of real 
road networks. In this paper, we provide an objective 
evaluation of 15 shortest path algorithms using a variety of 
real road networks. Based on the evaluation, a set of 
recommended algorithms for computing shortest paths on 
real road networks is identified. This evaluation should be 
particularly useful to researchers and practitioners in 
operations research, management science, transportation, 
and Geographic Information Systems. The computation of 
shortest paths is an important task in many network and 
transportation related analyses. The development, 
computational testing, and efficient implementation of 
shortest path algorithms have remained important research 
topics within related disciplines such as operations. 
 
LOCATION-BASED SPATIAL QUERY PROCESSING IN WIRELESS 

BROADCAST ENVIRONMENTS 
 Location-based spatial queries (LBSQs) refer to spatial 
queries whose answers rely on the location of the inquirer. 
Efficient processing of LBSQs is of critical importance 
with the ever-increasing deployment and use of mobile 
technologies. We show that LBSQs have certain unique 
characteristics that traditional spatial query processing in 
centralized databases does not address. For example, a 
significant challenge is presented by wireless broadcasting 
environments, which have excellent scalability but often 
exhibit high-latency database access. In this paper, we 
present a novel query processing technique that, while 
maintaining high scalability and accuracy, manages to 
reduce the latency considerably in answering location-
based spatial queries. Our approach is based on peer-to-
peer sharing, which enables us to process queries without 
delay at a mobile host by using query results cached in its 
neighboring mobile peers. We demonstrate the feasibility 
of our approach through a probabilistic analysis, and we 
illustrate the appeal of our technique through extensive 
simulation results. 
 
SHORTEST PATH COMPUTATION ON AIR INDEXES 
Shortest path computation is one of the most common 
queries in location-based services that involve 
transportation networks. Motivated by scalability 
challenges faced in the mobile network industry, we 
propose adopting the wireless broadcast model for such 
location-dependent applications. In this model the data are 
continuously transmitted on the air, while clients listen to 
the broadcast and process their queries locally. Although 
spatial problems have been considered in this environment, 
there exists no study on shortest path queries in road 
networks. We develop the first framework to compute 
shortest paths on the air, and demonstrate the practicality 
and efficiency of our techniques through experiments with 
real road networks and actual device specifications. 
 
ENERGY- EFFICIENT SHORTEST PATH QUERY 

PROCESSING ON AIR 
Wireless broadcast provides a scalable and secure spatial 
data dissemination approach for geographical applications 
in wireless mobile environments. Among various location-
based services, the shortest path query on road networks is 
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one of the most popular and essential services in our daily 
life. In this paper, we propose an energy-efficient scheme 
for on air shortest path query processing on road networks, 
which leverages an elaborate air index called Bag Index 
based upon the novel Hilbert-based heuristic tree 
decomposition for the road networks. Experimental results 
show that the proposed approach incurs less energy 
consumption on both communication and computation than 
the previous schemes. 
 
PROXIMITY SEARCH IN DATABASES 
An information retrieval (IR) engine can rank documents 
based on textual proximity of keywords within each 
document. In this paper we apply this notion to search 
across an entire database for objects that are \near &quot; 
other relevant objects. Proximity search enables simple 
\focusing &quot; queries based on general relationships 
among objects, helpful for interactive query sessions. We 
view the database as a graph, with data in vertices (objects) 
and relationships indicated by edges. Proximity is dened 
based on shortest paths between objects. We have 
implemented a prototype search engine that uses this model 
to enable keyword searches over databases, and we have 
found it very e active for quickly ending relevant 
information. Computing the distance between objects in a 
graph stored on disk can be very expensive. Hence, we 
show how to build compact indexes that allow us to quickly 
nd the distance between objects at search time. 
Experiments show that our algorithms are e-cient and scale 
well. 
 
HIERARCHICAL ENCODED PATH VIEWS FOR PATH QUERY 

PROCESSING 
Efficient path computation is essential for applications such 
as intelligent transportation systems (ITS) and network 
routing. In ITS navigation systems, many path requests can 
be submitted over the same, typically huge, transportation 
network within a small time window. While path pre 
computation (path view) would provide an efficient path 
query response, it raises three problems which must be 
addressed: 1) pre computed paths exceed the current 
computer main memory capacity for large networks; 2) 
disk-based solutions are too inefficient to meet the stringent 
requirements of these target applications; and 3) path views 
become too costly to update for large graphs (resulting in 
out-of-date query results). We propose a hierarchical 
encoded path view (HEPV) model that addresses all three 
problems. By hierarchically encoding partial paths, HEPV 
reduces the view encoding time, updating time and storage 
requirements beyond previously known path pre 
computation techniques, while significantly minimizing 
path retrieval time. We prove that paths retrieved over 
HEPV are optimal. We present complete solutions for all 
phases of the HEPV approach, including graph partitioning, 
hierarchy generation, path view encoding and updating, and 
path retrieval. In this paper, we also present an in-depth 
experimental evaluation of HEPV based on both synthetic 
and real GIS networks. Our results confirm that HEPV 
offers advantages over alternative path finding approaches 
in terms of performance and space efficiency 

AN EFFICIENT PATH COMPUTATION MODEL FOR 

HIERARCHICALLY STRUCTURED TOPOGRAPHICAL ROAD MAPS 
In this paper, we have developed a HiTi (Hierarchical 
MulTi) graph model for structuring large topographical 
road maps to speed up the minimum cost route 
computation. The HiTi graph model provides a novel 
approach to abstracting and structuring a topographical 
road map in a hierarchical fashion. We propose a new 
shortest path algorithm named SPAH, which utilizes HiTi 
graph model of a topographical road map for its 
computation. We give the proof for the optimality of 
SPAH. Our performance analysis of SPAH on grid graphs 
showed that it significantly reduces the search space over 
existing methods. We also present an in-depth experimental 
analysis of HiTi graph method by comparing it with other 
similar works on grid graphs. Within the HiTi graph 
framework, we also propose a parallel shortest path 
algorithm named ISPAH. Experimental results show that 
inter query shortest path problem provides more 
opportunity for scalable parallelism than the intra query 
shortest path problem. 
 

II.RELATED WORK: 
A) ROAD NETWORKS AND SHORTEST PATH QUERY 
Algorithms for shortest path queries are categorized as 
follows: (a) those with no pre-computation, where only the 
road network information is available, and (b) those with 
pre-computation, where shortest paths between some or all 
node pairs are pre-calculated and appropriate information is 
materialized in order to speed up the search. 
   1) WITHOUT PRE-COMPUTATION: 
 A common algorithm is Dijkstra’s [13]. Initially, nodes 
adjacent to vs are pushed into a min-heap with their graph 
weights from vs as sorting keys. The top node v in the heap 
is popped in every iteration and expanded, i.e., its adjacent 
nodes v 0 are en-heaped with key equal to that of v plus the 
weight of edge (v, v 0 ). The process stops when vt is 
popped. The shortest path is returned by tracing backwards 
the expansions that lead to vt. A* search [14] improves on 
Dijkstra’s algorithm but requires a lower bound LB(v, vt) 
to be known for the graph distance between an encountered 
node v and the target node vt. The difference from Dijkstra 
is that the key of each en heaped node v is increased by 
LB(v, vt). We ignore A* in the following since we assume 
general road networks (where no a priori lower bounds 
exist). 
 
 2) WITH PRE-COMPUTATION:  
 First partitions the network nodes. A bit vector (flag)[15] 
is assigned to every edge, where each bit corresponds to a 
partition; in the flag of edge (vi, vj ) the bit for a partition is 
1 if there is at least one node v in the partition where the 
shortest path from vi to v traverses (vi, vj ). Search (e.g., 
Dijkstra) only considers edges whose bit for vt’s partition is 
1. Landmark chooses some anchor nodes (called 
landmarks) and pre-computes for each node v its graph 
distances to all anchor nodes. A distance vector is then 
created from the distances to the anchor nodes. From the 
distance vectors of two nodes, a lower bound can be 
derived for their graph distance. 
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3) WIRELESS BROADCASTING AND AIR INDEXES 
In this model the server repeatedly transmits identical 
broadcast cycles, each containing the entire database and 
potentially some indexing information (called air index ). 
The broadcast cycle consists of fixed-size packets, defining 
the smallest information unit transmitted. The most 
common organization of the broadcast cycle is the (1,m) 
interleaving scheme   
                  

 
exemplified in Figure 1; the data tuples are placed into m 
equi-sized data segments interleaved by m copies of the 
index (e.g., a B-tree). To process a query, the client tunes in 
the broadcast channel and waits until the next index is 
broadcast; the larger m is, the shorter the wait for the index. 
The client receives the index, performs its point/range 
selection, and then waits until the data segments that 
contain the result tuples are broadcast; the larger m is, the 
longer the wait for the data.                                                                
  

III. PROBLEM STATEMENT 
The shortest path computation is mainly used in the road 
network. The very first solution of the optimal route query 
is based on the pre-stored weights. The first approaches 
considered only the end points. Most of the techniques have 
limitations in some particular area. The main problems are 
to find shortest path during road traffic networks. Among 
this some may consider constraints and others without 
consider the constraints and these are the main problems to 
consider. 

 
IV. MOTIVATION: 

 We are planning a weekend trip around the town as 
follows: first we intend to visit a shopping center in the 
afternoon to check the season’s new arrivals, then we plan 
to take   lunch in an Indian restaurant, and finally, we 
would like to watch a specific movie at late night. 
Naturally, we intend to drive the minimum overall distance 
to these destinations. That is, we need to find the locations 
of the shopping center si, the Indian restaurant rj, and the 
theater tk that shows our movie, where traveling between 
these locations in the given order would result in the 
shortest travel distance (or time). 
We call this type of queries where the order of points to be 
visited is given and fixed, the optimal sequenced route 
queries or OSR for short. Using Fig. 2, we show that the 
OSR query cannot be optimally answered by simply 
performing a series of independent nearest neighbor 
searches from different locations. We use the first example 
described above as our running example throughout the 

paper. The figure shows a network of equally sized 
connected square cells, three different types of point sets 
shown by white, black and gray circles representing 
shopping centers, Indian restaurants, and theaters, 
respectively, and a starting point p (shown by fig1). 
                            

 
FIGURE 2 

 
V. PRELIMINARY 

PERFORMANCE FACTORS 
The main performance factors involved in OSP are: (i) tune 
in cost (at client side), (ii) broadcast size (at server side), 
and (iii) maintenance time (at server side), and (iv) query 
response time (at client side). 
In this work, we prioritize the tune-in cost as the main 
optimized factor since it affects the duration of client 
receivers into active mode and power consumption is 
essentially determined by the tuning cost (i.e., number of 
packets received) . In addition, shortening the duration of 
active mode enables the clients to receive more services 
simultaneously by selective tuning . These services may 
include providing live weather information, delivering 
latest promotions in surrounding area, and monitoring 
availability of parking slots at destination. If we minimize 
the tune-in cost of one service, then we reserve more 
resources for other services. 
The index maintenance time and broadcast size relate to the 
freshness of the live traffic information. The maintenance 
time is the time required to update the index according to 
live traffic information. The broadcast size is relevant to the 
latency of receiving the latest index information. As the 
freshness is one of our main design criteria, we must 
provide reasonable costs for these two factors. 
The last factor is the response time at client side. Given a 
proper index structure, the response time of shortest path 
computation can be very fast (i.e., few milliseconds on 
large road maps) which is negligible compared to access 
latency for current wireless network speed. The 
computation also consumes power but their effect is 
outweighed by communication. It remains, however, an 
evaluated factor for OSP. 
Bidirectional Search executes Dijkstra’s algorithm 
simultaneously forwards from the source s and backwards 
from the target t. Once some node has been visited from 
both directions, the shortest path can be derived from the 
information already gathered [4]. Many more advanced 
speed-up techniques use bidirectional search as an optional 
or sometimes even mandatory ingredient. 
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Hierarchical Approaches try to exploit the hierarchical 
structure of the given network. In a preprocessing step, a 
hierarchy is extracted, which can be used to accelerate all 
subsequent queries. 
Many speed-up techniques can be combined. In [17], a 
combination of a special kind of geometric container [18], 
the separator-based multi-level method [19], and A∗ search 
yields a speed-up of 62 for a railway transportation 
problem. In [20], combinations of A∗ search, bidirectional 
search, the separator-based multi-level method, and 
geometric containers are studied: Depending on the graph 
type, different combinations turn out to be best 
B)ADAPTATION OF EXISTING APPROACHES 
In this section, we briefly discuss the applicability of the 
state-of-the-art shortest path solutions on different 
transmission models. As discussed in the introduction, the 
result transmission model scales poorly with respect to the 
number of clients. The communication cost is proportional 
to the number of clients (regardless of whether the server 
transmits live traffic or result paths to the clients). Thus, we 
omit this model from the remaining discussion. 
1. RAW TRANSMISSION MODEL 
Under the raw transmission model, the traffic data (i.e., 
edge weights) are broadcasted by a set of packets for each 
broadcast cycle. Each header stores the latest time stamp of 
the packets, so that clients can decide which packets have 
been updated, and only fetch those updated packets in the 
current broadcast cycle. Having downloaded the raw traffic 
data from the broadcast channel, the following methods 
either directly calculate the shortest path or efficiently 
maintain certain data structure for the shortest path 
computation. 
Uninformed search (e.g., Dijkstra’s algorithm) traverses 
graph nodes in ascending order of their distances from the 
source s, and eventually discovers the shortest path to the 
destination t. Bi-directional search (BD) reduces the search 
space by executing Dijkstra’s algorithm simultaneously 
forwards from s and backwards from t. As to be discussed 
shortly, bi-directional search can also be applied on some 
advanced index structures. However, the response time is 
relatively high and the clients may receive large amount of 
irrelevant updates due to the transmission model. 
Goal directed approaches search towards the target by 
filtering out the edges that cannot possibly belong to the 
shortest path. The filtering procedure requires some pre-
computed information. ALT  and arc flags (AF) are two 
representative algorithms in this category. 
ALT makes use of A search, landmarks, and triangle 
inequality. A few landmark nodes are selected and the 
distances between each landmark and every node are pre-
computed. These pre-computed distances can be exploited 
to derive distance bounds search on the graph. Delling and 
Wagner  propose a lazy update paradigm for ALT (DALT) 
so that it can tolerate certain extents of edge weights 
changes on a dynamic graph. The distance bounds derived 
from the pre-computed information remain correct if no 
edge weight becomes lower than the initial weight used at 
the ALT construction. This lazy update paradigm 
significantly reduces the index maintenance cost. 

Another well known goal directed approach is arc flags that 
partitions the graph into m sub-graphs. For each edge e, it 
stores a bitmap B if and only if a shortest path to a node in 
the sub-graph i starts with e. During the Dijkstra execution, 
it only relaxes those edges for which the bitmap flag of the 
target node’s subgraph is true. AF provides reasonable 
speed-ups, but consumes too much space for large road 
networks. The dynamic updates of AF (DAF) have been 
recently studied in. However, the solution is not practical 
since the cost of updating the bitmap flags is exponential to 
the number of edge updates. 
Dynamic shortest path tree (DSPT) maintains a tree 
structure locally for efficient shortest path retrieval. how to 
maintain a correct shortest path tree rooted at s after receive 
a set of edge weight updates to the graph . Finding a 
shortest path from s to any node is computed time on the 
shortest path tree. In their work, a simple dynamic version 
of Dijkstra is proposed which can outperform all 
competitors. 
2. Index Transmission Model 
The index transmission model enables servers to broadcast 
an index instead of raw traffic data. We review the state-of 
the- art indices for shortest path computation and discuss 
their applicability on the index transmission model. 
 Road map hierarchical approaches try to exploit the 
hierarchical structure to the road map network in a pre-
processing step, which can be used to accelerate all 
subsequent queries. These speed-up approaches include 
reach, highway hierarchies (HH) , contraction hierarchies 
(CH) , and transit node routing (TNR). 
Reach, HH, and CH are based on shortcut techniques, i.e., 
some paths in the original graph are represented by some 
shortcut edges. The shortcuts are identified out by 
exploiting the hierarchical structure (e.g., node ordering) on 
the road map network. To answer a query, a bi-directional 
search is executed on the overlay graph that constitutes of 
the shortcuts and some edges in the original graph. As the 
shortcuts are the only extra structure stored in the index, the 
construction is relatively fast as compared to other index 
approaches. 
The hierarchical approaches can provide very fast query 
time as reported in. However, the maintenance time could 
be high as most of them have no efficient approach to 
update the pre-computed data structure. HH and CH can 
support dynamic weight updates but the solution is limited 
to weight increasing cases. In, a theoretical approach has 
been proposed to update the overlay graphs, but the 
proposed algorithms have not been shown to have good 
practical performances in real-world networks. Again, none 
of these approaches supports index transmission model 
well since the shortest path can only be computed on a 
complete index. 
Hierarchical index structures provide another way to 
abstracting and structuring a topographical index in a 
hierarchical fashion. Hierarchical MulTi-graph model 
(HiTi) is a representative approach in this category. The 
meaning of hierarchy in HiTi is the hierarchy of the index 
(i.e., tree structure) instead of the hierarchy of the road map 
(i.e., level of roads). By exploiting the hierarchical index 
structure, HiTi can support fast shortest path computation 
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on a portion of entire index which can significantly reduce 
the tune-in cost on the index transmission model. However, 
prohibitive maintenance time and large broadcast size make 
it inapplicable to OSP on any transmission model.  
Hierarchical encoded path view (HEPV) and Hub indexing 
share the same intuition of HiTi which divides large graph 
into smaller sub graphs and organize them in a hierarchical 
fashion by pushing up border nodes. However, both are 
infeasible for OSP since these approaches suffer from the 
excessive storage overhead for a large amount of pre-
computed path information. 
Full pre-computation 
Pre-computes the shortest paths between any two nodes in 
the road network, such as SILC and distance index. Even 
though these approaches offer fast query response time, the 
maintenance cost and size overhead become prohibitive on 
large road networks. Besides, as reported by, the 
performance of the full pre-computation approaches (i.e., 
SILC is not much superior to those road map hierarchical 
approaches (i.e., CH.)  
Combination approaches integrate promising features from 
different index structure to support efficient shortest path 

computation. SHARC and CALT] are two well studied 
combination approaches which integrate road map 
hierarchical approaches with AF and ALT, respectively. 
However, these complex index structures are either lack of 
efficient maintenance strategies or have huge size overhead 
which makes them inapplicable to OSP on any transmission 
model. 
DISCUSSION 
Except for hierarchical index structures, all methods on 
either raw or index transmission models suffer from a 
drawback that a few updates could affect a large portion of 
packets. We demonstrate this by a simple probabilistic 
analysis.  
OUR CONTRIBUTIONS 
An impressive result is that the driver can compute/update 
their shortest path result by receiving only a small fraction 
of the index. As such, huge communication cost will be 
spent on sending result paths on this model. We will extend 
our solution on time dependent networks. This is a very 
interesting topic since the decision of a shortest path 
depends not only on current traffic data but also based on 
the predicted traffic circumstances. 

 
SYSTEM ARCHITECTURE: 
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SENSOR NODE 
The Sensor Node is used to sense all the nodes and the 
process in the network. Each and every node will be 
created via sensor. Sensor can also able to forward and 
receive the files and can also synchronize it successfully. 
SEARCH ENGINE SERVER CONSTRUCTION 
This module is an important module of our system. This 
module provides the ways to construct database of location 
information and other related information of that location 
ROUTE QUERY CONSTRUCTION 
This module facilitates our system to construct the user’s 
query. This query construction is done for making efficient 
way for processing the query to give optimal result for the 
users. 

 
VI ELLIPTIC BOUNDARY (EB) METHOD 

 Intuitively, in order to efficiently process shortest path 
queries we have to partition the road network into regions 
and use an index structure to guide the search through 
them. To satisfy the requirements, the index should be 
particularly concise, much more so than existing indexes 
designed for disk-resident networks. The Elliptic Boundary 
method (EB) follows this approach. Its crux is to first 
provide the client with an upper bound of the shortest path 
distance between vs and vt. This bound is used to prune 
(i.e., to avoid listening to) network information about nodes 
that lie too far away from vs and vt to affect the shortest 
path search. This is achieved by partitioning the network 
into regions, and placing in the index of EB information 
about the minimum and maximum possible distance from 
any partition to any other. EB owes its name to the fact that 
the search area is reminiscent of a network-based ellipse 
with foci the regions. 
 
C) INDEX OF EB 
The index of EB includes two components. The first de- 
fines partitions and provides a mapping of nodes into 
regions; the second specifies minimum/maximum distances 
between regions. To commence query processing, the client 
must first identify the regions Rs and Rt of the source vs 
and destination vt, respectively. This process is bound to 
the partitioning method used. A straightforward approach is 
to superimpose a Euclidean regular grid (of equi-sized 
rectangular cells) over the network, and consider the part of 
the network inside each cell as a region. In this approach 
the client could trivially map the Euclidean coordinates of 
vs and vt to regions Rs and Rt, requiring only knowledge of 
the grid granularity (e.g., k×m cell partitioning), and of the 
total spatial extent of the grid. The drawback of this 
approach is that some regions would contain too few nodes 
(or be empty), while others would be too full. This would 
reduce the benefits of partitioning and impede the search. 
D) CLIENT-SIDE PROCESSING IN EB 
Posed a query, the client tunes in the broadcast channel, 
and listens to the current packet. It retrieves the pointer to 
the next index and sleeps; it wakes up when the index starts 
being broadcast, and receives it in its entirety. Regions Rs 
and Rt are determined. The second component of the index 
(array A) is then used to derive an upper bound UB for the 

shortest path distance from vs to vt; the maximum value 
stored in ARi,Rj serves as UB. The correctness of this 
upper bound can be easily seen, since any path from source 
to destination has to pass through at least one border node 
of each Rs and Rt. The next step is to determine which 
regions must be received. Based again on A, the client 
needs to listen to only those regions R for which 
mindist(Rs, R)+mindist(R, Rt) ≤ UB, i.e., the sum of 
minimum distance from Rs to R plus the minimum distance 
from R to Rt is no larger than UB. Upon deciding which 
regions are necessary, it sleeps and wakes up when their 
data (contained nodes and adjacency lists thereof) are 
broadcast. When all necessary regions are broadcast and 
received, the client performs a Dijkstra search in their 
union (a sub-graph of the network) and reports the 
computed shortest path; this is guaranteed to be the correct 
answer in the entire network. Observe that access latency 
does not exceed one broadcast cycle. 
 

VII NEXT REGION (NR) METHOD 
While EB allows for selective tuning, its search space (i.e., 
the set of regions received by the client) may still be large. 
The problem is exacerbated when the source and 
destination are far away, as EB’s network-based ellipse 
includes an increasing number of regions. In the extreme 
case where vs and vt are located in the furthest regions, it is 
possible that EB needs to receive all regions. Note that in 
this degenerate case, performance may actually be worse 
than Dijkstra’s algorithm, since the broadcast cycle of EB 
is longer. In this section we present the Next Region 
method (NR), which avoids the above problem. The server 
again pre-computes the shortest paths between all border 
nodes of different regions, but now the index keeps for 
each pair of Ri, Rj the identifiers of intermediate regions 
appearing in any shortest path between any of their border 
nodes. These regions are guaranteed to contain the shortest 
path from any node in Ri to any node in Rj . To exemplify, 
consider that the index includes an n × n × n array A of 
boolean values, where n is the number of network regions. 
The bit in cell ARi,Rj ,Rk is 1 if and only if there exists a 
shortest path from Ri to Rj that traverses Rk. Given array 
A, the client knows in advance which regions are necessary 
for query processing. Consider the example in Figure 4. 
The source is in region R1, which has two border nodes; 
the destination is in R16, which has a single border node. 
There are two shortest paths between the border nodes of 
R1 and R16. One of them traverses regions R2, R6, R7, 
R11 and R12, and the other regions R5, R6, R7, R11 and 
R12. The NR index records that any shortest path from R1 
to R16 may only pass through the union of the above 
region sets (shown gray in the figure), and the 
corresponding bits in A are set to 1. Array A as described 
above has n 3 size, and would lead to a large index. This, in 
turn, implies a long broadcast cycle, especially if the (1,m) 
scheme is applied. In Section 5.1 we show how we can 
retain the pruning effectiveness of NR while both (i) 
keeping the broadcast cycle short and (ii) achieving low 
access latency. We stress that the reduced access latency is 
provided by local, region-specific indexes, broadcast 
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immediately before the corresponding regions. This 
eliminates the need for (1,m) interleaving, and is 
fundamentally different from the common practice in the 
literature of having a global index, and replicating identical 
copies of it in the broadcast cycle. 

 

 
Which has a single border node? There are two shortest 
paths between the border nodes of R1 and R16. One of 
them traverses regions R2, R6, R7, R11 and R12, and the 
other regions R5, R6, R7, R11 and R12. The NR index 
records that any shortest path from R1 to R16 may only 
pass through the union of the above region sets (shown 
gray in the figure), and the corresponding bits in A are set 
to 1. Array A as described above has n 3 size, and would 
lead to a large index. This, in turn, implies a long broadcast 
cycle, especially if the (1,m) scheme is applied. In Section 
B we show how we can retain the pruning effectiveness of 
NR while both (i) keeping the broadcast cycle short and (ii) 
achieving low access latency. We stress that the reduced 
access latency is provided by local, region-specific indexes, 
broadcast immediately before the corresponding regions. 
This eliminates the need for (1,m) interleaving, and is 
fundamentally different from the common practice in the 
literature of having a global index, and replicating identical 
copies of it in the broadcast cycle. 
E)INDEX OF NR 
The first component of the index in NR is the same as EB, 
and is used to identify the source and destination regions Rs 
and Rt. Regarding the second component, the main idea is 
that, since the device will have to wake up every time a 
needed region is broadcast, it does not need to know all the 
required regions in advance. It suffices, instead, to only 
know when the next required region will be broadcast. 
When the client receives that region, it also listens to the 
adjacent local index in order to determine the next required 
region, and so on. This way, we keep the broadcast cycle 
small, we enable the client to receive only the relevant parts 
of (instead of the entire) indexing information, and allow 
the device to commence query processing shortly after 
tuning in for the first time, without employing the (1,m) 
scheme. Specifically, the index A m of region Rm is an 
array with n rows and n columns. A m is placed in the 
broadcast cycle immediately before Rm’s data. Every cell 

A m Ri,Rj indicates the next region Rnxt in the broadcast 
cycle that is needed for a shortest path from Ri to Rj . Note 
that Rnxt could be Rm itself. Figure 5 shows the structure 
of the cycle, where the unlabeled slot before each region 
corresponds to its index. 
F)CLIENT-SIDE PROCESSING IN NR 
Posed a query, the device tunes in the channel, receives the 
current packet, and waits until the subsequent index is 
broadcast (for this to be possible, every packet in the cycle 
includes a pointer (offset) to the subsequent index). The 
client receives this index, and finds out what the next 
required region Rnxt is. It wakes up when Rnxt is broadcast 
and keeps listening until A nxt+1 is also received. From A 
nxt+1, it determines the next needed region, and so on. 
Note that if the end of the current broadcast cycle is 
reached, another starts, and processing continues as if it 
was the same cycle. When the latest index received 
indicates that Rnxt is a region that the client already 
possesses, listening stops and a Dijkstra search computes 
the shortest path over all collected regions. Similarly to EB, 
the access latency in NR does not exceed one broadcast 
cycle. Regarding tuning time and memory requirements, 
we expect NR to be superior to EB, as the client listens 
only to a subset of the regions necessary in EB. The same 
holds for CPU time at the client. Pre-computation cost is 
identical to EB (assuming the same partitioning), as the 
same shortest paths among border nodes are computed. To 
illustrate, consider the broadcast cycle in Figure 5. The user 
wants to find the shortest path from a source in R1 to a 
destination in R25. The needed regions for this shortest 
path computation are shown in gray color, but the client 
does not know this in advance. Assume that the query is 
posed while R11 data are broadcast, which points the client 
to index A 12. Index A 12 (shown in Figure 6) indicates 
that R13 is the next needed region, so the device sleeps and 
wakes up to receive R13 and also the adjacent index A 14 . 
A 14 indicates that R14 is also required, so the client 
continues to receive data from the channel, until A 15 
points to R19, as shown in Figure 6. The device sleeps until 
R19 is broadcast, and so on. The process continues this way 
until R8 is received and index A 9 points to the already 
available R13; listening stops and the shortest path is 
computed. Algorithm 2 in Appendix B formalizes this 
process. 
So far we have assumed that source and destination are 
network nodes. In practice this may not always be the case, 
i.e., the source/destination could be at arbitrary locations on 
the network. EB and NR work as described, the difference 
being that the border nodes of a region are now defined as 
the intersections of its network edges  (i.e., with the 
boundary of the region). 
 

VIII QUERY PROCESSING: 
Distance signature is superior to the existing indexes in 
terms of the diversity of the kinds of queries supported. 
Since it indexes the underlying distances, rather than the 
solution for a particular type of queries, it can be applied to 
virtually any queries relating to distances. In this section, 
we present the algorithms to process common spatial 
queries based on the distance signatures. We discuss range 
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queries, and generalize the processing paradigm to other 
query types such as aggregation queries and network joins. 

 
FIGURE 6 

G) DISTANCE SPECTRUM PARTITION: 
A good partition of distance spectrum must consider the 
following factors:  
 
 DATASET DISTRIBUTION 
 The distribution, especially the density of the dataset, 
determines the object distribution in the distance spectrum. 
Obviously, a dense dataset requires more categories than a 
sparse dataset does. 
 
 QUERY LOAD 
 For example, the distance threshold ǫ of a range query, 
query affect how precisely the distance spectrum should be 
partitioned. In order to quantify the query load, we define 
“spreading” (denoted by sp) as the distance threshold of 
those objects that are interesting to the query. For range 
queries, sp = ǫ, sp is the distance of the k+1th nearest 
neighbor. Obviously, the distribution of sp should affect the 
partition of distance spectrum so that the signatures can 
achieve maximum performance. 
STORAGE AVAILABILITY 
Accurate partition requires more storage to encode the 
categories than coarse partition. As such, the availability of 
disk storage is also a concern. 
 

IX CONCLUSIONS 
We studied online shortest path computation; the shortest 
path result is computed/updated based on the live traffic 
circumstances. We carefully analyze the existing work and 
discuss their inapplicability to the problem (due to their 
prohibitive maintenance time and large transmission 
overhead). To address the problem, an impressive result is 

that the driver can compute/update their shortest path result 
by receiving only a small fraction of the index. As such, 
huge communication cost will be spent on sending result 
paths on this model. We extended our solution on time 
dependent networks. Since the decision of a shortest path 
depends not only on current traffic data but also based on 
the predicted traffic circumstances. 
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